375 research outputs found

    Microprocessor control of a wind turbine generator

    Get PDF
    A microprocessor based system was used to control the unattended operation of a wind turbine generator. The turbine and its microcomputer system are fully described with special emphasis on the wide variety of tasks performed by the microprocessor for the safe and efficient operation of the turbine. The flexibility, cost and reliability of the microprocessor were major factors in its selection

    Multi-field asymptotic homogenization approach for Bloch wave propagation in periodic thermodiffusive elastic materials

    Get PDF
    Multi-field asymptotic homogenization methods are proposed to describe the behaviour of periodic Cauchy materials subject to several physical phenomena, focusing on thermodiffusion. The resulting homogenized models provide the overall constitutive tensors and overall inertial terms. Moreover, they allow one to investigate the complex band structures associated with damped Bloch waves travelling in periodic materials, avoiding the challenging computations needed by the adoption of micromechanical approaches

    Metamaterial filter design via surrogate optimization

    Get PDF
    Recently, an increasing research effort has been dedicated to analyse transmission and dispersion properties of periodic metamaterials containing resonators, and to optimize the amplitude of selected acoustic band gaps between consecutive dispersion curves in the Floquet-Bloch spectrum. Potential novel applications of this research are in the design of passive mechanical filters/diodes. The present work proposes a way to interpolate the objective functions in such band gap optimization problems, using Radial Basis Functions. The study is motivated by the high computational effort often needed for an exact evaluation of the original objective functions, when using iterative optimization algorithms. By replacing such functions with surrogate objective functions, well-performing suboptimal solutions can be obtained with a small computational effort. Numerical results demonstrate the feasibility of the approach

    Identification of roughness with optimal contact response with respect to real contact area and normal stiffness

    Get PDF
    Additive manufacturing technologies are a key point of the current era of Industry 4.0, promoting the production of mechanical components via the addition of subsequent layers of material. Then, they may be also used to produce surfaces tailored to achieve a desired mechanical contact response. In this work, we develop a method to prototype profiles optimizing a suitable trade-off between two different target mechanical responses. The mechanical design problem is solved relying on both physical assumptions and optimization methods. An algorithm is proposed, exploiting an analogy between genetics and the multiscale characterization of roughness, where various length-scales are described in terms of rough profiles, named chromosomes. Finally, the proposed algorithm is tested on a representative example, and the topological and spectral features of roughness of the optimized profiles are discussed

    A game-theoretic approach for reliability evaluation of public transportation transfers with stochastic features

    Get PDF
    A game-theoretic approach based on the framework of transferable-utility cooperative games is developed to assess the reliability of transfer nodes in public transportation networks in the case of stochastic transfer times. A cooperative game is defined, whose model takes into account the public transportation system, the travel times, the transfers and the associated stochastic transfer times, and the users’ demand. The transfer stops are modeled as the players of such a game, and the Shapley value – a solution concept in cooperative game theory – is used to identify their centrality and relative importance. Theoretical properties of the model are analyzed. A two-level Monte Carlo approximation of the vector of Shapley values associated with the nodes is introduced, which is efficient and able to take into account the stochastic features of the transportation network. The performance of the algorithm is investigated, together with that of its distributed computing variation. The usefulness of the proposed approach for planners and policy makers is shown with a simple example and on a case study from the public transportation network of Auckland, New Zealand

    LQG online learning

    Get PDF
    • …
    corecore